

SECTION V									
1. OBSTRUCTIONS AND RECOMMENDATIONS FOR UPGRADES									
2. SERIAL	3. OBSTRUCTION (Including existsting MLC)	4. ROAD SECTION	5. GRID	6. RECOMMENDATION FOR UPGRADE (Including new MLC)	$\stackrel{7}{\text { MANPÖWER }}$	8. EQUIPMENT/ VEHICLES	9 CONSTRUCTION MATERIAL	$\begin{aligned} & 10 \\ & \text { TIME } \end{aligned}$	11. NEW MLC

1. ROUTE CHART SECTION VI

SECTION VII

SECTION VII			
7.1. FACTORS USED IN ROUTE CLASSIFICATION FORMULAS. For example, 3.5/X/70/3.9(OB)			
SERIAL	FACTOR	SYMBOL	MEANING
1	WIDTH	For example, 3.5 meters	The width of the narrowest part for any given section.
2	ROUTE TYPE	X	All-weather route - waterproof surface, never closed by weather other than snow or flooding.
		Y	Limited all-weather route - loose or light surface, sometimes reduced volumeof traffic due to bad weather.
		Z	Fair weather route - quickly impassable in adverse weather.
3	MLC	For example, 70	The maximum MLC of the vehicle which can use the route in convoy.
4	OVERHEAD CLEARANCE	For example, 3.9	The minimum vertical distance between the route or road surface and any overhead obstruction. Only included if height is less than the required for the MLC.
5	OBSTRUCTION TO TRAFFIC OTHER THAN A BRIDGE	(OB)	Temporary or single obstructions.
		(T)	Regular, recurrent and serious snow blockage.
		(W)	Regular, recurrent, and serious flooding.
7.2. FACTORS USED IN ROAD CLASSIFICATION FORMULAS.			
SERIAL	FACTOR	SYMBOL	MEANING
1	PREFIX	A	No limiting factors.
		B	One or more limiting factors.
2	LIMITING FACTORS: SHARP CURVES	C	Radius less than 25 meters and deflecting the direction more than $90 .{ }^{0}$
	STEEP GRADIENTS	g	Gradients of 7 percent or over.
	POOR DRAINAGE	d	Inadequate or blocked drainage.
	WEAK FOUNDATIONS	f	Unstable, loose, or easily displaced.
	ROUGH SURFACE	S	Likely to reduce convoy speed
	EXCESSIVE CAMBER OR SUPER ELEVATION	j	Likely to cause heavy vehicle to skid or drag towards roadside.
	DOUBTFUL CONDITIONS	?	Indeterminate or doubtful conditions expressed with ? and (). For example, (f?).
	SHOULDERS	-	No symbol, but written reports should specify.
3	WIDTH	I	Width of travelled way or total width including shoulders (when they are usable).
4	CONSTRUCTION MATERIAL: TYPE X ROUTE	$\begin{gathered} \mathrm{k} \\ \mathrm{~kb} \end{gathered}$	Concrete. Bituminous or asphaltic concrete.
	TYPE X OR Y ROUTE	$\begin{gathered} \mathrm{p} \\ \mathrm{rb} \end{gathered}$	Paving brick or stone. Bitumen penetrated macadam, water-bound macadam with superficial asphalt or tar cover.
	TYPE Y ROUTE	$\begin{aligned} & \mathrm{r} \\ & \mathrm{I} \end{aligned}$	Water-bound macadam, crushed rock or coral. Gravel or lightly metaled.
	TYPE Y OR Z ROUTE	nb	Bituminous surface treatment on natural earth, stabilized soil, sand-clay, and so forth.
	TYPE Z ROUTE	n b V	Natural earth, stabilized soil, sand-clay, shell, cinders, and so forth. Bituminous construction. To be used alone only when type of bituminous construction cannot be determined. Various other types not mentioned above.
5	LENGTH	(km)	The length of the section in kilometers may be added in brackets if desired.
6	OBSTRUCTIONS: SNOW FLOODING	(OB)	Symbol at the end of the formula indicates existence of obstruction.
		(T)	Regular, recurrent and serious snow blockage.
		(W)	Regular and sufficiently flooding which impedes traffic flow.

NOTE. Consider the following as obstructions:

- Overhead clearance less than 4.3 meters.
- Reductions in road widths which limit traffic capacity, such as craters.
- Gradients of 7 percent and over.
- Curves with less than a 25-meter radius and deflecting more than 90.
- Ford and ferries.

Example: $\mathrm{B} / \mathrm{c}(\mathrm{f}$?)/3.2/4.8/p/(4.5km)(OB)(T)
According to the width, classify a route or road as follows:

- Limited access. Up to 3.5 meters wide; it permits passage of isolated vehicles in one direction only.
- Single lane. From 3.5 to 5.5 meters wide; it permits use only in one direction at any one time.
- Single flow. From 5.5 to 7.5 meters wide; it permits isolated vehicles to pass or travel in the opposite direction to the main flow.
- Double flow. Over 7.3 meters wide; it permits two columns of vehicles to proceed simultaneously.
7.3. MEASURING THE RADIUS OF AN EXSISTING CURVE.

Step 1. A chord $A B$ is set out as shown and bisected at C, so that $A C=B C=a$.
Step 2. From point C, the perpendicular offset (x) is measured at point D on the curve.
Step 3. The radius is calculated from the formula. $R=\frac{x^{2}+a^{2}}{2 x}$

7.4. CONVERSION FACTORS

U.S. UNITS	MULTIPLIED BY	EQUALS METRIC UNITS
CENTIMETER	0.39370	INCH
FOOT	0.30480	METER
INCH	2.54000	MILENTIMETER
MILOMETER	0.62137	FEET
MILE	3.28084	KILOMETER

TEMPERTURE

CENTIGRADE DEGREES	$\mathrm{c}^{\circ}=\frac{5\left(F^{\circ}-32\right)}{9}$	FAHRENHEIT DEGREES
FAHRENHEIT DEGREES	$\mathrm{F}^{\circ}=\frac{9 \mathrm{C}^{\circ}}{5}+32$	CENTIGRADE DEGREES

